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The nonlinear development of a weakly modulated Tollmien-Schlichting wavetrain 
in a boundary layer is studied theoretically using high-Reynolds-number asymptotic 
methods. The ‘carrier’ wave is taken to be two-dimensional, and the envelope is 
assumed to be a slowly varying function of time and of the streamwise and spanwise 
variables. Attention is focused on the scalings appropriate to the so-called ‘upper 
branch‘ and ‘high-frequency lower branch‘. The dominant nonlinear effects are 
found to arise in the critical layer and the surrounding ‘diffusion layer’: nonlinear 
interactions in these regions can influence the development of the wavetrain by 
producing a spanwise-dependent mean-flow distortion. The amplitude evolution is 
governed by an integro-partial-differential equation, whose nonlinear term is history- 
dependent and involves the highest derivative with respect to the spanwise variable. 
Numerical solutions show that a localized singularity can develop at a finite distance 
downstream. This singularity seems consistent with the experimentally observed 
focusing of vorticity at certain spanwise locations, although quantitative comparisons 
have not been attempted. 

1. Introduction 
Experimental studies of boundary-layer transition suggest that, in the case of 

initially small disturbances, there are at least three stages in transition to turbulence. 
In the first stage, the disturbance may be predominantly two-dimensional, and it 
evolves according to linear instability theory. In the second stage, three-dimensional 
components grow rapidly at rates much larger than those predicted by linear theory 
for the undisturbed basic state. Finally, in the third stage, the flow breaks down into 
random, small-scale motions. Depending on the initial amplitude, the second stage 
of development may take different forms. For a relatively large input, Klebanoff & 
Tidstrom (1959) and Klebanoff, Tidstrom & Sargent (1962) documented that a two- 
dimensional Tollmien-Schlichting (T-S) wave was warped into a ‘peak-valley’ pattern, 
which maintained a fixed spanwise position as it amplified downstream. High-shear 
layers, followed by ‘spikes’, were observed to form at the peaks. Transition followed 
and was characterized by the abrupt growth of disturbances of high frequency and 
short wavelength. This process is known as ‘K-type’ transition. 
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For weaker (quasi-two-dimensional) initial disturbances, however, the rapidly grow- 
ing three-dimensional waves are found to have a subharmonic frequency and a 
streamwise wavelength approximately twice that of the planar T-S wave; thus, when 
visualized, the flow field exhibits a staggered pattern (Kachanov & Levchenko 1984; 
Saric & Thomas 1984). It has been argued that, according to the spanwise wave- 
length, this process can be subdivided into ‘C-type’ and ‘H-type’ transition - where 
the different classifications refer to the subharmonic-resonance mechanism of Craik 
(1971) (see also Raetz 1959), and the secondary-instability mechanism of Herbert 
(1983, 1988), respectively. 

K-type transition has, on the whole, received less attention theoretically than the 
other mechanisms. Herbert (1988) suggested that a fundamental parametric resonance 
could explain this type of transition. However, except in the case where an exact 
two-dimensional equilibrium exists, the secondary-instability theory still awaits a 
fully rigorous mathematical justification (but see Stewart & Smith 1987). Moreover, 
this approach assumes that the disturbance is spanwise-periodic (as do many other 
theoretical studies). In flows of practical interest, disturbances can be of a more 
general form; indeed Gaster & Grant (1975) point out that a wavepacket is a better 
model of natural transition. 

Gaster & Grant (1975) showed experimentally that a wavepacket of small-amplitude 
disturbances initially evolves according to linear theory. In the linear rkgime, the wave- 
packet can be represented as a summation of the least-stable modes (Gaster 1975). At 
later stages, however, the packet undergoes distortions in which there is a rapid growth 
of oblique modes with a particular spanwise wavenumber. Gaster & Grant (1975) 
conjectured that this is the result of nonlinear effects. More recently, Cohen, Breuer 
& Haritonidis (1991) studied the development of a wavepacket further downstream, 
and confirmed the observations of Gaster & Grant (1975). Moreover, they concluded 
that the dominant planar and oblique modes form a resonant triad - a conclusion 
which is also suggested by figure 9 of Gaster & Grant (1975). 

The first theory incorporating nonlinear modulational effects was that of Stewartson 
& Stuart (1971) for a two-dimensional wavepacket in plane Poiseuille flow (PPF). 
This work was extended to include spanwise modulation by Hocking et al. (1972) 
and Davey, Hocking & Stewartson (1974) for PPF, and by Hocking (1975) for the 
asymptotic suction boundary layer. Strictly speaking, however, this approach applies 
only to exactly parallel flows, since the Reynolds number is taken to be finite. Indeed, 
most analyses of this type have been performed for Reynolds numbers close to the 
(finite) critical value for which the flow is marginally stable. 

A mathematically self-consistent extension of such weakly nonlinear analyses to 
spatially varying boundary layers can only be obtained for asymptotically large 
Reynolds numbers (e.g. Smith 1979; Bodonyi & Smith 1981). There is then a 
plethora of possible scalings depending on, inter alia, the form and size of the initial 
disturbance. To illustrate this point, consider an infinitesimally small disturbance of 
fixed frequency, which is propagating downstream. If the disturbance is introduced 
upstream of the lower branch (e.g. point A in figure l), it initially decays as it 
propagates downstream. Once it has passed the lower branch, it starts to grow, and 
continues to do so until it reaches the upper branch, after which it decays again. 
By varying the initial amplitude of the disturbance, and the location at which it 
is introduced, an initially linear perturbation can be made to become nonlinear at 
virtually any downstream station between the lower and upper branches. The precise 
evolution of the disturbances depends on where nonlinear effects become important. 
For instance, a relatively large disturbance may become nonlinear in the lower- 
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FIGURE 1. Schematic illustration of the different regimes for an experiment where fixed-frequency 
disturbances are introduced into a flat-plate (or accelerating) boundary layer. The abscissa and 
ordinate represent downstream distance, and the frequency of the disturbance, respectively. The 
solid lines represent the asymptotic lower and upper branches of the linear neutral curve, while the 
dotted line represents the continuation of the neutral curve to finite Reynolds numbers provided 
by solutions to the (heuristic) Orr-Sommerfeld equation. A fixed-frequency disturbance introduced 
at point A moves along the dashed line as it propagates downstream. Point C is located in the 
‘lower-branch’ regime (the lightly stippled region), while point B is asymptotically close to the lower 
neutral curve within this regime. Point D is in the ‘upper-branch’ rbgime (the darkly stippled region). 

A 
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branch region, while a smaller disturbance may remain linear until the upper-branch 
region.? Furthermore, different forms of nonlinearity result from different types of 
input disturbance (e.g. predominantly two-dimensional, strongly three-dimensional). 
Further discussion of this point is given in a recent review by Cowley & Wu (1994). 

In this paper we follow Stewartson & Stuart (1971), Hocking et al. (1972), etc., 
and restrict attention to the nonlinear evolution of a slowly modulated wavetrain 
consisting of (almost) two-dimensional waves. In those early studies, such wavetrains 
were assumed to develop from initial ‘point’ perturbations. Here, however, we assume 
that the weak three-dimensional ‘warping’ arises from imperfections in the method by 
which supposedly two-dimensional disturbances are introduced (as is almost inevitable 
in an experiment). Such three-dimensional effects, though weak, can exert a significant 
influence on the development of the perturbation. 

Modulated disturbances of this kind in boundary layers have been the subject of 
a number of recent studies. For example, Smith & Walton (1989) have examined 

t Definitions of the ‘lower-branch’ and the ‘upper-branch’ regions can only be given in an asymp- 
totic sense. For a detailed discussion of this point see, for example, Cowley & Wu (1994). In brief, 
consider a disturbance with a fixed dimensional frequency, Q, introduced into an incompressible 
fluid of kinematic viscosity v, flowing with velocity Urn past an flat plate. Suppose that the frequency 
parameter, F = QvU;*, is small, and that the local (chord-length) Reynolds number, defined by 
Re = U,Lv-’ where L is the distance from the leading edge, is large. In asymptotic terms, the 
‘lower-branch region’ covers distances from the leading edge where Re = O ( F 4 1 3 ) ,  while the ‘up- 
per-branch region’ covers the more extensive distances downstream where Re = O(FP5I3) .  These 
regions are illustrated schematically in figure 1. At finite Reynolds numbers it may be difficult to 
distinguish between the regions. 
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the effects of weak spanwise modulation on perturbations which become nonlinear 
asymptotically close to the lower branch (e.g. point B in figure 1). In particular, their 
analysis identified the potential for nonlinear interactions between near-planar T-S 
waves and pre-existing and/or induced longitudinal vortices (see the work of Hall 
& Smith 1989, 1991 and Smith & Blennerhassett 1992, and references therein, for 
disturbances with stronger spanwise variations). Inter alia, Smith & Walton (1989) 
showed that the nonlinear amplification of weak three-dimensional warping could 
lead to the spanwise concentration of streamwise vorticity (see also Hall & Smith 
1990 for analogous work on PPF). 

There has been little analysis on weakly modulated perturbations that become 
nonlinear in the major part of the lower-branch region, e.g. at points such as C in 
figure 1. This is because the spatial/temporal growth rate of T-S waves is comparable 
with the wavenumber/frequency of such waves in this region, with the result that an 
asymptotic description of nonlinear effects is difficult, if not impossible (e.g. see Hall 
1995). However, analytical progress is much more feasible in the upper-branch scaling 
rkgime (e.g. at points such as D in figure l), because at high Reynolds numbers, the 
growth rate of T-S waves in the region is relatively small (e.g. Reid 1965). Further, 
as Goldstein & Durbin (1986) have observed, this scaling applies to almost the entire 
linearly unstable region. Therefore, it can be argued that the upper-branch rkgime is 
worthy of further study - especially since in many well-known experiments, nonlinear 
effects are observed to become significant near the upper branch rather than in the 
vicinity of the lower branch (e.g. Klebanoff et al. 1962; Gaster & Grant 1975; Cohen 
et al. 1991). 

The ‘upstream’ limit of the upper-branch scaling matches to the ‘downstream’ 
limit of the lower-branch scaling (see below). In the literature the latter limit is 
sometimes referred to as the ‘high-frequency’ lower branch (HFLB): see for example 
Zhuk & Ryzhov (1982), Smith & Burggraf (1985), Smith (1986), Smith & Stewart 
(1987). Recently, Stewart & Smith (1992) have studied weakly three-dimensional T-S 
wavetrains in this limit. They make comparisons with the experiments of Klebanoff 
& Tidstrom (1959), and claim that their wave-vortex-interaction theory ‘captures the 
heart of the experimental findings for this type of boundary-layer transition’. Smith 
& Bowles (1992) perform the corresponding analysis for PPF, and likewise obtain 
‘reasonably encouraging’ comparisons with the experiments of Nishioka, Asai & Iida 
(1979). However, in the appropriate ‘upstream’ limit of our upper-branch analysis, 
we do not recover the results of Stewart & Smith (1992). The latter are based on 
the assumption that the critical layer is ‘passive’, that is, the velocity jump across it 
is zero (to the required order of working). In Appendix A we show that, for smaller 
disturbance amplitudes than those considered by Stewart & Smith (1992), there is 
a nonlinear interaction associated with a non-zero velocity jump across the critical 
level.? This does not necessarily invalidate the work of Stewart & Smith (1992): if the 
assumption mentioned above can be justified for larger-amplitude waves, then their 
analysis may be relevant to certain forms of bypass transition. On the other hand, 
for small-amplitude disturbances which first becomes nonlinear in the HFLB rkgime, 
it would appear that the initial nonlinear stage of development is not described by 
the Stewart & Smith (1992) theory. 

In this paper we develop a self-consistent theory based on a high-Reynolds-number 

t We refer to the critical level, rather than the critical layer, since the thin critical layer is 
surrounded by a slightly thicker diffusion layer. The key velocity jump is that across the combination 
of critical layer and diffusion layer. 
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assumption. We take an flat-plate boundary layer as the basic flow, and concentrate 
for the most part on the upper-branch regime. The asymptotic description of linear 
instability then involves a standard five-zone structure (e.g. Bodonyi & Smith 1981). 
From the standpoint of our weakly nonlinear theory, the zone of most interest is 
the viscous critical layer, where the velocity of the basic flow is approximately equal 
to the phase speed of the carrier wave. This layer is surrounded by a quasi-inviscid 
region (the ‘Tollmien layer’), and is thereby separated from the viscous Stokes layer 
adjacent to the wall. The lower-branch regime, by contrast, has a three-zone (‘triple- 
deck‘) structure, with a single viscous region (the ‘lower deck’): see Appendix A. 
However, in the ‘high-frequency’ (or ‘downstream’) limit of the lower-branch rkgime, 
the viscous layer splits into three distinct asymptotic regions: a Stokes layer, a 
quasi-inviscid layer, and a critical layer (see figure 7). Thus, in this limit, a five-zone 
structure emerges which matches to that of the upper-branch regime. Indeed, the 
only significant difference between the HFLB regime and the upper-branch regime 
is that, in the latter, an extra linear term arises from the curvature of the velocity 
profile. This means that our analysis for the upper-branch scaling also applies, after 
trivial modification, to the HFLB scaling (see Appendix A).? 

Since the early work of Brown & Stewartson (1978) and Hickernell (1984), nonlinear 
effects associated with the unsteady evolution of critical layers have been studied 
extensively, e.g. Churilov & Shukhman (1988), Goldstein & Leib (1989), Goldstein 
& Choi (1989), Shukhman (1991), Leib (1991), Goldstein & Lee (1992), Wu (1992, 
1993a), Wu, Lee & Cowley (1993). In all these studies, ‘unsteady’ inertia terms play 
a key r81e in the dynamics of the critical layers. Of particular relevance is the work 
of Wu (1993~) on the nonlinear evolution of spanwise-modulated Rayleigh instability 
waves in the non-equilibrium critical-layer regime. He observes that in the strongly 
viscous limit, the critical layer splits into two asymptotic regions: an inner quasi- 
steady viscous critical layer, surrounded by a thicker ‘diffusion layer’ (see also Brown 
& Stewartson 1978; Churilov & Shukhman 1987; Wu et al. 1993). The existence of the 
diffusion layer means that, even in this limit, the amplitude equation has a non-local 
nonlinear term (see also Smith & Walton 1989 and references therein). Wu (1993~) 
points out that this viscous limit is related to the analogous problem for upper- 
branch T-S waves in boundary layers. The aim of the present paper is to explore 
this aspect in detail, with extensions to include both a slow streamwise modulation 
and a slow temporal modulation. In particular, we derive an amplitude equation 
governing the evolution, with time and/or streamwise distance, of the envelope of 
a spanwise-modulated wavetrain. Numerical solutions of this equation show that a 
localized singularity can develop in the solution at a finite distance downstream, with 
energy and vorticity concentrating at a particular spanwise location. This is possibly 
in line with the streamwise ‘streaks’ observed by Klebanoff et al. (1962), and others. 
Although for definiteness the theory is presented for a flat-plate boundary layer, we 
emphasize that our amplitude equation is in fact generic, and applies to other shear 
flows as well (e.g. Wu 1993~). 

This paper is organized as follows. In $2, the problem is formulated. As in 
Mankbadi, Wu & Lee (1993) and Wu (1993a,b), we adopt a high-Reynolds-number 
asymptotic approach. In particular, we identify appropriate ‘slow’ streamwise and 

A distinguishing feature of the HFLB rCgime is the fact that, according to linear instability 
theory, a fixed-frequency disturbance propagating downstream experiences the greatest net increase 
in amplitude in this intermediate zone between the lower-branch and upper-branch scalings (e.g. 
Goldstein & Hultgren 1989; Cowley & Wu 1994). This is despite the fact that the local growth rate 
is larger in the lower-branch rCgime, and the upper-branch rCgime extends over a greater distance. 
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spanwise spatial variables, and also introduce a slow time variable so that a localized 
wavepacket can (in principle) be described. The mathematical 'book-keeping' then 
requires the instability to be described by a seven-layer asymptotic structure. Although 
this multiple-layer formulation may seem unduly elaborate, such an approach ensures 
that the dominant physical processes are identified and included in the analysis. We 
find that away from the critical level, nonlinear effects are negligible, and hence a slight 
extension of the two-dimensional linear analysis of Bodonyi & Smith (1981) gives 
the leading-order dispersion relation and relates the amplitude growth to the velocity 
jump across the critical level. In 93, the flow in the critical layer is analysed. It is shown 
that the flow in this region is viscous and quasi-steady, and that quadratic interactions 
within the critical layer generate a spanwise-dependent mean-flow correction, which 
cannot match directly to the outer solution. This indicates the need for a diffusion 
layer that sandwiches the critical layer (see $4). In the diffusion layer, spatial- 
and temporal-inertia effects, and viscous effects, all appear at leading order in the 
governing equations for the induced mean flow. The cubic 'wave-vortex' interaction 
of this mean flow with the fundamental mode produces a velocity jump across the 
critical layer and diffusion layer. In 95 the amplitude-evolution equation is obtained, 
and some of its properties are studied both analytically and numerically. (Appendix 
B discusses certain limiting cases with weaker or stronger three-dimensionality.) In $6, 
we relate our results to previous theoretical work, and indicate its possible relevance 
to experimental observations. 

2. Formulation and linear solutions 
The basic flow is taken to be the Blasius boundary layer on a flat plate. Cartesian 

coordinates (x,y,z) are chosen with the origin at a point on the plate a distance L 
downstream of the leading edge; x is along the plate and y normal to it, while z is in 
the spanwise direction. The velocity, length, time and pressure are normalized by Urn, 
6*, 6 * / U ,  and pU& respectively, where p is the fluid density, v the kinematic viscosity, 
U ,  the free-stream velocity, and 6" = (vL/U,)'/' the boundary-layer thickness at 
x = 0 . The local (thickness) Reynolds number R = U,6*/v is assumed to be 
asymptotically large. Close to the wall the basic-flow profile has the expansion 

with 

Let us suppose that a weakly three-dimensional wavetrain, modulated in the stream- 
wise and spanwise directions, is superimposed upon this base flow. The upper-branch 
regime corresponds to the scaling 

J. = J.0 (1 + x/R)- ' l2 ,  A4 = -A2/48 , A0 = 0.332 ... . (2.2) 

where Q is the dimensional frequency of the carrier wave.? It is convenient to 
introduce a small parameter 0 = R-'/lO, and to define a scaled frequency w = 

t After minor modifications to the asymptotic scalings, our analysis is also applicable to a 
boundary layer with pressure gradient. In this case, (2 .3)  should be replaced by R - ( L ? V / U ~ - ~ / ~ .  
This is the upper-branch scaling for boundary layers with favourable pressure gradients (e.g. Reid 
1965; Smith & Bodonyi 1982), but is also relevant to boundary layers with adverse pressure 
gradients if disturbances become nonlinear when their (linear) growth rate is determined by viscous 
effects. 
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o - ' ~ ( Q v / U ~ ) .  Linear theory (e.g. Reid 1965; Bodonyi & Smith 1981) suggests the 
introduction of scaled co-ordinates 

(2.4) 

where 5 is a 'fast' variable describing the oscillation of planar T-S waves of O(0-l) 
wavelength and O(02) frequency, while X and T are 'slow' variables describing the 
growth of the T-S waves (and the evolution of the wavepacket envelope) over O(O-~)  
distances and O(oP5) times. The slow growth is therefore an O ( 0 3 )  effect. Following 
Hocking et al. (1972) and others, we fix the scale of the spanwise modulation so that 
(linear) spanwise dispersion is comparable with the slow growth of the T-S waves. By 
symmetry, we anticipate that this will be represented by a term of the form a2 /dz2 .  
Since the wavelength of the T-S waves is O(o-'), and the slow growth is an O(a3) 
correction, we expect the appropriate spanwise scaling to be 

2 4 5 t = ~ ~ a x - o w t ,  X = C X ,  T = o t ,  

z = IJo3J22 = 0 5 / 2 2  , (2.5) 

We thus adopt the multiple scales t 

and expand a as 

(there is no need for an O ( 0 3 )  term since it is accounted for by the slow evolution 
represented by a / a X ) .  The wave speed is defined as 

a = a. + aml + 02a2 + c3 In 0 ~ 1 3 ~  (2.7) 

c = o / a  = co + oc1 + 02c2 + . . . , with co = w/ao etc. (2.8) 

In terms of these scaled variables, we assume that the wall-pressure perturbation 
takes the form 

P = m {p0  + opl + a2p2 + g 3  In a~~~ + 03p3 + . . .} eic + C.C. + . . . , (2.9) 

(2.10) 
where 

Pi = Pi (X ,Z ,  T )  , 
and C.C. denotes complex conjugate. It remains to fix the amplitude, E ,  of the 
disturbance so that nonlinear effects appear in the leading-order amplitude-evolution 
equation. We consider this point after briefly outlining the asymptotic structure of 
the solution (see (2.31) below). 

As pointed out by Bodonyi & Smith (1981), the linear instability problem is 
described by a multi-layer structure with five asymptotic regions : the potential-flow 
zone (I), the main layer (11), the Tollmien layer (111), the Stokes layer (IV), and the 
critical layer (V). These layers have thickness of order o-l, 1, CJ, o4 and o3 respectively. 
However, when nonlinear effects are included it turns out that, in addition, a diffusion 
layer (VI) and a wall-buffer layer (VII) have to be introduced (cf. Wu 1993b). The 
structure thus consists of seven zones, as shown in figure 2. We obtain the solution 
in each of the regions by expanding in terms of the small parameter 0. In layers 
(1)-(IV), this procedure is straightforward since little more than the linear analysis 

t Strictly speaking, there should be an extra O ( d 0 )  term in the streamwise scaling in order 
to represent the very 'slow' non-parallelism of the boundary layer. However, this term has been 
suppressed since it does not enter the calculation to the order required; in other words, we may 
neglect the x-dependence of the basic flow U B ,  and use i = i o  in place of (2.2).  
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FIGC-RE 2 .  Schematic of the seven-zone flow structure: the potential layer I, the main layer 11, 
the Tollmien layer 111, the Stokes layer IV, the critical layer V, the diffusion layer VI and the 
wall-buffer layer VII. These layers have thicknesses O(a-'), O(1), O(o), O(a4), O(a3), O(a5l2) and 
O(a5/') respectively (in the case of a purely spatial stability analysis, the wall-buffer layer has width 
0(a2)). 

of Bodonyi & Smith (1981) is required. The key regions are those where nonlinear 
dynamics plays an essential part, namely, the critical layer (V) and the diffusion layer 
(VI). These will be considered in $3 and $4 respectively. (The wall-buffer layer (VII) 
has a purely passive r61e, and will not be discussed further.) 

We first consider the Tollmien layer (111), where the appropriate normal coordinate 
is 

y = Y / O  7 (2.11) 

and the flow is effectively inviscid. The perturbation velocity components correspond- 
ing to (2.9) expand in the form 

(2.12) 

(2.13) 

(2.14) 

u = E. { U" + O U ~  + 02u2 + o3 logoU3L + 03u3 + ...} eir +c.c. + .  . . 
t: = w2 { VO, + aV1 + 02Vz -t o3 log oV3, + 03V3 + . . .} eit + C.C. + . . . 
w = 6 0 3 1 2  {Wo+ ...} e'S+c.c .+... , 

where 

Ui = Ui( T ,  X ,  Y ,  2 )  , etc. (2.15) 

With E specified by (2.31), nonlinear terms do not occur in the governing equations 
to the order shown. The solutions for Ui, Vi,i = 0,1,2,3L are exactly as in the 
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two-dimensional analysis of Bodonyi & Smith (1981), namely 

Uo = LAo , Vo = -iaoAAoY , (2.16) 

, Vl =-iaoLAIY, (2.17) 

, V2 = -iaoAA2Y , (2.18) 

with 

(2.20) 

Here, however, there is a spanwise velocity whose leading-order component is given 
by 

w,=-. 1 ap0 

lao(AY - co) az ' (2.22) 

and the three-dimensionality makes its presence felt in the equations for U3 and V3; 
it is found that 

V3 = -iaoAA3( Y - t) + B3 
-ia&Ao ( Y 4  + 2tY3 + 6t2Y2 + 12t3(Y - t) In( Y - t)) , (2.23) 

where we define 

and 

t = co/A , (2.24) 

(2.25) 

is a function of T ,  X and 2 only, as is the unknown -A3. We note that V3 exhibits 
the familiar logarithmic branch-point singularity at Y = 6 ,  i.e. where the basic-flow 
velocity equals the wave speed to leading order. This gives rise to the critical layer 
(V), in which viscosity acts to smooth out the solution. The logarithm in (2.23) is to 
be interpreted as 

lnlY -ti, Y > t ,  
lnlY - t l - i @ ,  Y < t ,  ln(Y - t )  = 

where the so-called phase sh f t  

(2.26) 

(2.27) 

is determined from the critical-layer solution. 
The expansions of velocity and pressure in the potential-flow zone (I), main layer 

(11) and Stokes layer (IV) develop in a similar way to (2.9) and (2.12)-(2.14). Since the 
governing equations are again linear to the required order of working, solutions may 
be obtained by a straightforward modification of Bodonyi & Smith's (1981) analysis 
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and are not presented here. From matching the leading-order solutions in regions 
(I)-(IV) we obtain the leading-order dispersion relation 

xo = ( A w y 2  . (2.28) 

Matching at higher order yields the wavenumber corrections ai, i = 1,2,3L (which 
will not concern us here), and an equation for the evolution of the wall-pressure 
amplitude, namely 

X .  Wu, P. A. Stewart and S. J.  Cowley 

(2.29) 

the group velocity cg and dispersion parameter d are given by 

cg = 2c0 and d = (2A)-' , and Re(%) = Aao/ (2~) ' /~  = (A3/2)lj2 (2.30) 

is the viscous growth rate associated with the Stokes layer. The value of Im(k) need 
not concern us since it can be scaled out of the final amplitude equation: see (5.7) 
and (5.8). The important final term of (2.29) represents the contribution from 4,  the 
phase shift across the critical layer; it is here that nonlinearity can enter the governing 
equation (2.29). In the linear regime (p = rc, and this final term has a stabilizing effect, 
since A4, the curvature of the basic flow profile, is negative. 

As can be seen from (2.22), the three-dimensionality, though weak, forces a simple 
pole singularity in the leading-order spanwise velocity Wo at the critical level Y = 5. 
It is this property that dictates the form of the nonlinear interactions inside the critical 
layer and the diffusion layer, and fixes the amplitude e for which nonlinear effects are 
as important as the weak linear growth effects. A scaling argument similar to that 
given by Wu (1993~) shows that nonlinear interactions affect the phase shift 4 when 

€ - o  2514 , (2.31) 

as will become apparent once the critical-layer and diffusion-layer solutions have been 
presented (5934). We note that the scaling (2.31) is asymptotically smaller than the 
O ( 0 5 )  amplitude at which the critical layer of a purely two-dimensional disturbance 
becomes strongly nonlinear (cf. Haberman 1972). For two-dimensional perturbations 
of that size, Goldstein & Durbin (1986) show that the upper branch of the neutral 
curve can be eliminated. However, as we shall see, weak three-dimensional effects can 
lead to a nonlinear interaction different from that of Goldstein & Durbin (1986), and 
cause a radical departure from linear behaviour for disturbances whose amplitude 
scales as in (2.31). 

3. Critical-layer dynamics 
Within the critical layer, as for a linear T-S wave, there is a leading-order balance 

between the viscous and quasi-steady inertia terms (nonlinear effects enter at higher 
order). The appropriate transverse variable in this layer is therefore 

Y = (Y - Y c ) / G 3  9 Y c  = > (3.1) 
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0 = o ~ ~ ’ ~  { V-2 + oV-1 + o2V0 + 0 3 V 1  + 04V2 + 0912T/5/2 + 051no~, ,  

+ 0 5 1 / 3  + . . .} eit 

+oZ5/2 VE)  + . . .} e2it+ c.c. + o V ,  + 02512 In a ~ ? )  + 0 2 5 / 2 1 / ( 3 )  + 

+07 In o W F )  + o7 W$ + d512 Wc + . . . , 

M ... > (3.3) 12 -(2) 

{WE) + ... } e2it + c.c. 

{ 
w = 023/4 { Wo + . . .} eit + o 

(3.4) 

(3.5) 

(3.6) 

together with (2.9) as the expansion for the pressure. It is found that 
- 

V-2 = -iaocoAo , V-1 = -iao(coAl + C ~ A ~ )  , 

Vo = -iao(co~z + c l ~ l +  ~ 2 ~ 0 )  - iaoAAov , 
and that W o  satisfies 

so that 

(3.7) 

It turns out that the key nonlinear effect is the interaction of the fundamental mode, 
ei5, with the induced mean-flow correction represented by the U$,  V c ,  and @‘g. 
The second-harmonic (e2it) terms are too small in magnitude to contribute to the 
leading-order amplitude equation, and will not be discussed here. 

The mean-flow-correction terms satisfy 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

The only nonlinear forcing term in these equations is the right-hand side of the first 
of (3.13), which represents the leading-order Reynolds stress of the T-S wave. After 
substitution from (3.5) and (3.8), this equation can be solved to give 

+aEL(T,X,Z) + q,iig(T,X,Z) (3.14) 

It follows that as q + fco, 
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i n  .aPo 
22 O a 2  

D+ - D- = --P ~ + C.C. (3.16) 

In the Tollmien layer, however, the 2-component of mean flow can be no larger 
than O(ol0); direct matching with the critical-layer solution is therefore impossible. 
However, this is a familiar problem in critical-layer theory, first identified (for a two- 
dimensional flow) by Brown & Stewartson (1978) (see also Churilov & Shukhman 
1987; Goldstein & Hultgren 1988). The difficulty arises because the critical-layer 
equations are quasi-steady to leading order, and generate what appears to be a steady 
mean flow. However, in a problem where the disturbance evolves from an infinitesimal 
state, it is clear that the mean flow must also evolve on the same slow timescale. The 
viscous critical layer can therefore be regarded as a region of forcing, away from 
which the mean flow diffuses on the slow evolution timescale (see also Wu 1993a, Wu 
et al. 1993). From balancing the 05a/dT unsteady term with the oloa2/dy2 viscous 
term, the ‘diffusion layer’ which sandwiches the critical layer is seen to have an O ( O ~ / ~ )  
thickness. 

The diffusion-layer solution will be presented in the next section. It turns out that 
the Z-component of mean flow in the diffusion layer cannot be larger than O(07). 
Thus it is required that 

Further, the O(07) crossflow induces a streamwise mean-flow correction of the same 
order in the diffusion layer. This necessitates the introduction of the additional 
mean-flow terms uo, ul, U2,  v2 in the critical layer; these are of the form 

(3.18) 

(3.19) 

(3.20) 

The functions ago , fito , 
determined by matching. 

1,2,. . . , and to calculate the velocity jumps Jg)  , defined by 

are arbitrary at this stage, and are subsequently 

It remains to solve for the higher-order fundamental components ui , v i  for i = 

(3.22) 

where the integral is to be interpreted as a Hadamard finite part. It is found that 

At next order, however, the relevant equations are 

(3.24) 
- a v 3  

arl 
i ~ U 3  + - = 0.l.t , 

(3.25) 
a 2  

(iao2q-w) u3 + v 3  = 4 7 - 2  { 214& + T} + 0.l.t , 
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where o.1.t. stands for other linear terms which do not contribute to the jump in 
aP3/aq. After use of (3.5) and (3.21), this key velocity jump is found to be given by 

The first term in (3.26) is linear, while the second represents the leading-order 
nonlinear interaction of the fundamental mode with the induced mean-flow correction. 

4. Diffusion-layer dynamics 

of thickness 0(a5I2), to accommodate the mean-flow distortion. We thus define 
As pointed out in the previous section, it is necessary to introduce a diffusion layer, 

(4.1) q = ( y  - y,)/a5/2 = 0 1/2 r ,  
and make the expansions 

u = a25/4 {Go + oOl + a3/203/2 + a2 O2 + c3 In + a3 8, + . . .} eit 

+a1’ { o!:) + . . .} e2ic + c.c. + 070, + . . . , 

+a2712 { v:;) +. . .} e2ic + c.c. + a12vM + . . . , 

(4.2) 

v = a33/4 { V - 3 / 2  + oVPll2 + o ~ / ~ V ~  + a5l2V1 

+a3 V 3 / 2  + a7/2 V2 + a9/2 In a V3L + V3 + . . . } e‘t 
(4.3) 

(4.4) 

where the subscript M is again used to indicate contributions to the mean flow.? It 
is found that 

(4.5) 

w = a25/4 { ~0 + . . .> eit + { PVE) + . . .} e2it + c.c. + a7wM + . . . , 

”. I 

V-312 = -iaocoAo , V-1,2 = -iao(coAl + clAo) , 

(4.6) 

and that the governing equations for OM, VM and W M  are (cf. Hall & Smith 1990) 

aVM atVM -+- = o ,  aq az 
a Oo 

3 / 2 7  + C.C. = 0 , 

1 .ape 
1 2 9 2  O az 

(4.8) + AVM = -.p 
rl 

+ C.C. 

P - + C.C. = -__ 

(4.7) 

(4.9) 

t As mentioned in the previous section, there is no mean-flow term of order 0’ In Q in expansion 
(4.4), contrary to what is implied by Wu (1993a), 56.2. (The exp_ansi_ons imm_ediately before equation 
(6.6) of that paper should not contain the logarithmic terms U1, Vl and W1. This has no bearing 
on the rest of the paper, however.) 
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We note that both spatial and temporal variation appears at leading order in the 
mean-flow equations. Equation (4.9) is to be solved subject to the requirement that 

f i M + 0  as 1 ~ 1 + c o ,  (4.10) 

and the jump conditions across 4 = 0 

(4.11) 

(4.12) 

in view of (3.15) and the second of (3.13). The solution can be expressed in the form 
m 

f i M  = 1 1"; 1 F ( T  - [ / co ,X  - < , Z )  ke-k2i1co-ik0 dk d i  + C.C. , (4.13) 
i2co 0 

where 
* ap0 F ( T , X , Z )  = Po - . az (4.14) 

Equations (4.7) and (4.8) can then be solved, subject to matching with (3.18)-(3.20), 
to give 

(4.15) 

+ C.C. + f i M ( T , X , Z )  . (4.16) 

The function f i M  is arbitrary at this stage, but does not affect the amplitude-evolution 
equation. By matching the mean-flow solutions (4.15)-(4.16) to those in the critical 
layer, it is possible to determine some of the arbitrary functions appearing in (3.18)- 
(3.21). For our purposes, we need merely note that 

+ C.C. + f i M ( T , X , Z )  , (4.17) 

(4.18) 

which can be substituted into (3.26) to determine the velocity jump JE'. 

i = l ,;, .  . . , and determine the velocity jumps across the diffusion layer, namely 
Finally, we solve for the higher-order fundamental amplitudes 8, , Vi , Pi , 

(4.19) 
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where once again the Hadamard finite part is understood. It is found that 
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J D  ('1 - - J ( 3 / 2 )  D = Jf) = J(3L)  D = 0 . (4.20) 

However, the mean-flow correction (4.16) interacts with the fundamental mode to 
force the 0(cr25/4~3) streamwise velocity 03, which satisfies 

- aV3 
aq 

ia0U3 + ~ = o.1.t. , (4.21) 

In consequence there is a velocity jump in av3,ldq, given by 

This velocity jump is of the same order as that across the critical layer, J F )  in (3.26), 
which incorporates the leading-order linear effect. The scaling (2.31) is thus the 
'threshold' amplitude for nonlinear effects to cause a significant departure from linear 
behaviour. 

5. The modulation equation 
It follows from (2.27) that the phase shift 4 is related to the velocity jumps by 

Substituting this into (2.29), and using (3.26), (4.17), (4.18) and (4.22), we obtain the 
amplitude equation 

apO ap0 a2P0 
aT ax az2 -+c,---- id-  = IC Po + ipPoQ , 

where 

the coefficients are given by 

' I 2  d = (22)-1 , = !n3/2a0ci/22-3 = 1n3/2m5/4;1-13/4 
cg = 2c0 = 2 @/A) , 2 2 

(5.4) 

(5 .5)  

Coefficients excepted, this equation is the same as that found by Wu (1993~) for the 
strongly viscous limit of a Rayleigh-wave problem with an unsteady critical layer. We 
note that the nonlinear term is non-local, and involves the highest-order derivative. In 
these respects, the amplitude equation (5.2) resembles those found by Smith & Walton 
(1989) and Hall & Smith (1989) in their studies of wave-vortex interactions close 
to the lower-branch neutral curve (see also Smith & Blennerhassett 1992). In those 
studies the dominant mean-flow distortion arises in a wall-buffer layer, which plays 
an analogous r61e to our diffusion layer. However, because in the aforementioned 
Iower-branch analyses (a) the basic flow in the wall-buffer layer is effectively a uniform 
shear, rather than a uniform velocity, and (b)  spatially evolving disturbances were 
studied, the analogous integral to (5.3) had a (-'I3, rather than a ( - ' I 2 ,  factor. A [ - ' I 2  

and IC = ICR + i ICI, with 

TCR = ~ o / ( ~ c o ) ' / ~  + 12&~~c" ' /A~ = (A3/2)'l2 + 1 2 n 2 4 0 ~ / ~ A - ~ ~ / ~  . 
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factor occurs if the spatio-temporal instability of lower-branch T-S waves is studied 
(see Hall & Smith 1990 for the case of temporal instability of PPF). 

It is convenient to transform into a frame moving with the group velocity by 
introducing a retarded time variable 

z = T - X / c , .  (5.6) 

1/2 z 
We also make the rescaling 

Z = K R ~ ,  X = ICRX/C, , 2 = (KR/d) , 

It is implicitly assumed here that the linear growth rate, rcR, is positive. However, the 
derivation of the amplitude equation (5.2) remains valid if K~ < 0, and the analysis 
may then describe aspects of bypass transition. We note that the derivation breaks 
down sufficiently close to the upper-branch neutral curve, i.e. when ICR is very small 
(cf. Smith, Brown & Brown 1993). 

In terms of the scaled variables (5.7), the amplitude equation (5.2) takes the form 

Thus, in contrast to many other weakly nonlinear analyses of wavepackets, the 
transformation (5.6) does not eliminate one of the independent variables; an effect 
of the diffusion layer is to ensure that the phase speed is as relevant as the group 
velocity. 

Equation (5.8) cannot be solved analytically in general. Some simplification is 
obtained when the spanwise lengthscale is asymptotically large or small compared to 
(2.5): see Appendix B. In the remainder of this section, however, we are principally 
concerned with solutions of equation (5.8). 

5.1. A Sideband' instability 
The amplitude equation (5.8) admits the exact solution 

j j  = poe(1-iP2)8+igZ , (5.9) 

corresponding to a pure plane wave; p is a measure of the obliqueness of the wave. 
(A slight obliqueness may occur in experiments if the disturbance generator is not 
exactly perpendicular to the basic flow.) However, the solution (5.9) is unstable to a 
secondary 'sideband' instability. To see this we write 

p = e(l-i/32)X+i/3Z [Po + Q+(X)e ibZ+ib2QT + zp-(Qe-ib2-ib2Q? +...I , (5.10) 

substitute into (5.8), and linearize on the assumption that 241. The resulting governing 
equations are 

e-(2-ibzC2)tde 
*x La, [(b + B)P;(X - 5 )  + h - ( X  - 511 51/2 

. a P -  
~ + (ib2 - 2ipb)p- = -ibpoe a x  

(5.12) 
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As a result of the growth of the planar wave, this secondary sideband instability is an 
initial-value problem, in contrast to the more familiar eigenvalue problem that arises 
in the sideband instability of an equilibrium solution (e.g. Stuart & DiPrima 1978), 
or in certain other 'secondary-instability' theories (e.g. Herbert 1988). 

For simplicity, we restrict attention to the stability of a two-dimensional plane 
wave, i.e. with p = 0. A solution of (5.11) and (5.12) is then sought subject to 

p+ e-ib2X , p - + O  as X + - c o ,  (5.13) 

so that the initial perturbation of the two-dimensional T-S wave is assumed to consist 
of a single 'sideband' ( p + ) ;  the other sideband ( p - )  is subsequently generated through 
nonlinear interactions. The solution may be expressed in series form 

(5.14) 
m=O m=O 

(cf. Goldstein & Lee 1992; Wundrow, Hultgren & Goldstein 1994), with coefficients 
given by 

By application of Laplace's method (Bender & Orszag 1978), we find the large-X 
behaviour 

with 

1 + ib2(Q - 3) 
12 

a =  7 (5.17) 

The result (5.16) indicates that the three-dimensional perturbations have an 'exponen- 
tial of exponential' form of growth because of sideband resonance (cf. Smith 1986; 
Stewart & Smith 1992; Smith, Stewart & Bowles 1994). This behaviour is similar to 
that found by Goldstein & Lee (1992), and Wundrow et al. (1994), although here 
the secondary instability involves a pair of fundamental oblique modes, whereas they 
demonstrated the secondary instability of a growing planar wave to a subharmonic 
oblique disturbance (see also Zelman & Maslennikova 1993). 

The leading-order growth rate in (5.16) is proportional both to the four-thirds 
power of the amplitude of the plane wave, and to the four-thirds power of the 
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spanwise wavenumber b. The latter implies that the ‘most unstable’ oblique modes 
will have spanwise wavelengths much shorter than those considered here.? However, 
for large-b modes, the form (5.16) is only attained at an asymptotically large distance 
downstream, with Xs> In lbl. Further upstream, or more precisely for 

X4 min (i In ~bl,  i In (b (a  - 1)1) , (5.19) 

an analysis of the series coefficients shows that provided 52 # 1, large-b disturbances 
have the asymptotic behaviour 

Thus, if 52 < 1, there is a period of superexponential decay before the form (5.16) 
is attained, while if 52 > 1, (5.20) predicts superexponential growth, but with growth 
rate independent of b. This implies that the development of the sideband instability 
depends on the exciting frequency as well as the initial amplitude, and that nonlinear 
effects may not necessarily be triggered by the large-b modes. 

The solution (5.10), (5.14)-(5.15) is illustrated in figure 3 for b = n, 52 = 0. (The 
amplitude parameter T in (5.10), which is formally infinitesimal in the foregoing 
analysis, has been set equal to 0.0001 for comparison with the full numerical solution 
of equation (5.8) to be presented in $5.2 below.) The superexponential growth for 
large X given by (5.16) is evident, as is the asymptotic behaviour (5.20) even though 
b is not especially large. 

Finally for this subsection, we note from (5.20) that disturbances with frequencies 
52 z 1 need special treatment. In order to understand the behaviour in this case, we 
return to the asymptotic form (5.16), which gives 

(5.21) 

with C specified by (5.8). In this terminal rtgime, the growth-rate is independent of 
52, but for any fixed b, the amplitude JCI is maximized when 52 = 1, and for large b is 
sharply peaked about this value. This suggests that for a broadband initial disturbance 
of sufficiently small amplitude, modes with Ibl+ 1 and 52 z 1 will experience the largest 
net growth, and so may be the most likely to trigger nonlinearity. For such a mode, 
with 

52 = 1 + b-20 , (5.22) 

and 0 of order one, the transient stage (5.20) has a large superexponential growth 
(or decay) rate, of O ( b 2 k 1 ) ,  but is restricted to at most a relatively short range 
of X ,  with e4x 5 0(bp2fi2), so that the net growth (or decay) over this phase of 
development is insignificant compared to that of modes with the same b but 52 not 
close to 1. However, at somewhat larger distances downstream, with 

1 2 In l b - ’014X4+ In ~bl (5.23) 

t The absence of a fastest-growing mode makes for difficulties in the numerical solution of (5.Q 
because of the rapid growth of rounding error. This may be controlled, however, by the use of a 
‘spectral filter’ (cf. Krasny 1986). 
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FIGURE 3. The solution (5.14)-(5.15) of the sideband-instability problem (5.10)-(5.13), with 

asymptotic prediction (5.20) for ln(T"Jp+l); x, asymptotic prediction (5.20) for ln(P"Ip-l); - . -, 
asymptotic prediction (5.16) for In (Txlp+l). 

a = 0 , b = TC , 52 = 0 , E1 = 0.0001. The abscissa is X. -, ln(Pxlp+l); - - - , ln(TX1p-l); +, 

we find the asymptotic behaviour 

p+ rv ~ , - i b ' X  exp [+(I - i)n1/21blIp012e2x - ;(I + iii)X] , 

where 

(5.25) 

In this intermediate rCgime the sidebands grow superexponentially, with growth rate 
proportional both to the spanwise wavenumber and to the square of the plane-wave 
amplitude. 

The significance of SZ w 1 may be understood as follows. In view of (2.4), (2.9) 
and (5.7), the interaction described by (5.10) and (5.13) starts far upstream with a 
two-dimensional wave of frequency 020, streamwise wavenumber oa + O(a4), and 
wave speed 

oc2D = 0 (:) -k 0 ( C 4 )  , (5.26) 
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perturbed by a three-dimensional sideband for which the corresponding quantities are 

I 2 5 2  
a2030 = a o - 0 b K R Q ,  

in the limit Ibl+l (note that we have used cg = 2(w/a) + O(a) in obtaining the last 
result). Thus, if !2 # 1, the large-b limit involves an increasing discrepancy between 
the phase speeds of the two- and three-dimensional components, and a consequent 
separation of their critical levels. A distinguished scaling arises, and the above de- 
scription fails, when the difference in phase speeds, and thus the separation of the 
critical levels, is comparable with the critical-layer thickness, namely when 

04b2 - a3 , i.e. b - a-112 . (5.28) 

Analysis of this new rkgime (Jennings, Stewart & Wu 1996, in preparation) shows 
that as a’I2b increases, the interaction of the two-dimensional mode with the sideband 
is drastically reduced in strength. On the other hand, when SZ = 1 + O(bP2) the two 
modes have essentially the same critical layer and so can interact more efficiently. 
Even in this case, however, the present analysis is not valid for arbitrarily large b, 
since it turns out that when b rises to O ( O - ~ / ~ )  a new type of nonlinear (‘phase- 
locked’) interaction comes into play. This is discussed in detail by Jennings, Stewart 
& Wu (1996, in preparation) (see also Wu & Stewart 1996 for analogous work on 
‘phase-locked’ interactions of Rayleigh instability modes in free shear flows). 

5.2. Numerical solutions and a focusing singularity 

Numerical solutions to (5.8) have been obtained on the assumption that 
pendent of time? and periodic in the spanwise direction, so that 

is inde- 

(5.29) 
n=--co 

where b is the spanwise wavenumber. The Fourier series was suitably truncated, and 
the solution stepped forward in X using a predictor-corrector scheme. 

Figures 4 and 5 show the numerical solution for an initial condition consisting of a 
planar disturbance with a slight periodic distortion in the spanwise direction, namely 

(5.30) )e 

with b = rc and F = 0.0001. This is the same type of initial condition as in the 
sideband-instability analysis of the previous section, except that F is now finite. In 
fact, the development of the disturbance closely follows the predictions of (5.14)- 
(5.15) for x 5 0.9, as can be seen from a comparison of figures 3 and 4. There is 
a range of X over which the three-dimensional component decays, before growing 
superexponentially further downstream. Moreover, the first-harmonic amplitudes (p+1 I 
tend towards equality, and the disturbance becomes essentially symmetric in 2. All 
this is consistent with the asymptotic descriptions (5.20) and (5.16). Subsequently, 

t As a referee notes, a purely harmonic dependence could of course be accommodated. However, 
such a frequency shift could equally well be absorbed into the definition of w - see the discussion 
leading up to (2.4). 

j j  (1 + geibZ-ib2X 8 as X ~ --co , 
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FIGURE 4. A numerical solution to equation (5.8) for the initial condition (5.30); there is no 
modulation in time. The abscissa is X. (a) In /pol, ( b )  In JplI, (c) In Ip-11, (d )  In 1 ~ 2 1 ,  (e )  In Jp-21, 

however, the development of the higher harmonics leads to increasing departure from 
a sinusoidal profile, as shown by figure 5. At this stage, energy is concentrating in the 
spanwise direction, and it appears that the solution may be approaching a singularity 
at a finite distance downstream, X = Xs say, and at a particular spanwise position, 
z =2,.  

Among possible singularity structures, a distinguished case has 

(5.31) 

where K and 8 are real parameters. Substitution of (5.31) into (5.8) gives an equation 
for G, namely 

(5.32) 

Since 8 is arbitrary, we can take G(0) to be real and positive. It remains to show that 
there exist choices of G(0) and K such that a solution to (5.32) exists with 

G gy-2(1/4-x) as I r l+m,  (5.33) 

where g is a constant. Equation (5.32) was solved numerically. For a given choice 
of G(0) and K ,  a series solution was constructed for small y, on the assumption that 
G’(0) = 0. This was then ‘marched’ to larger values of y using the numerical scheme 
described in Appendix C. In figure 6 we have plotted IG(y)l and (arg G)’ for a solution 
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FIGURE 5. The same numerical so_iution as in figure 4. (a) II'I us. Z ,  ( b )  argI' US. Z .  -, = 0.91; 
_ - -  , X = 0.93; - -, X = 0.95; ' ' ., X = 0.952. 
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FIGURE 6. A numerical solution to (5.32), (5.33) for K = 0.392851 and G(0) = 0.986440. Details of 
the numerical method are given in Appendix C. (a)  (GI us. q ,  (b )  (arg G)’ us. v .  

with 
K NN 0.3928 and G(0) = 0.9864 . (5.34) 

We have been unable to determine whether the roots (5.34) are unique. However, 
since there is at least one solution it follows that (5.31) is an acceptable singularity 
structure. In order to compare this asymptotic description of the singularity with our 
numerical solution of equation (5 .8) ,  we note that (5.31) predicts 

4 ~ 1 0 g P ( x , Z , )  - -argP(X,Z,) as X + X; . (5.35) 

Figure 7 shows a plot of these quantities, taken from the numerical solution, at 
Z = 1.5078 (very close to the maximum of and larg PI),  for X between 0.94 and 
0.952; K is given by (5.34). It is plausible that the graph is approaching a straight 
line of slope 1, as predicted. 

Solutions to the amplitude equation (5.8) merit further study. In particular, the 
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FIGURE 7. A plot of 1.59121og us. -a rgP at 2 = 1.5078, for X between 0.94 and 0.952, from 
the numerical solution in figure 5. 

inclusion of both temporal and streamwise modulation, and its effect on the formation 
and structure of singularities, is a matter of current investigation. 

5.3. The next asymptotic stage: a non-equilibrium critical layer induced by 
the focusing singularity 

In the vicinity of the singularity (5.31), the amplitude equation (5.8) breaks down, 
and it is therefore necessary to consider a new asymptotic stage. To be specific, (5.31) 
indicates that close to the singularity IP,/P I - (x, - X)-’. Consequently, when 

X , - X = O ( o ) ,  (5.36) 

the unscaled (spatial) growth-rate is O(03) rather than O(04) as in the original scaling 
(2.4); in other words, the slow growth is now an O ( 0 2 )  rather than an O ( 0 3 )  correction. 
For this new scaling, the streamwise-variation term occurs at leading order in the 
critical-layer equations, so that the critical layer is now of non-equilibrium type. 
(Wundrow et al. 1994 have shown that a similar phenomenon can occur through 
subharmonic parametric resonance.) It also follows from (5.3 1) that 

IP,/PI - (X, - X ) - 1 / 2  , (5.37) 

i.e. the spanwise scale shortens. To take account of the evolution over these shorter 
streamwise and spanwise lengthscales, it is appropriate to introduce 

(5.38) 

In this new asymptotic rtgime, the (unscaled) magnitude of the disturbance wall- 
pressure becomes 0(029/4 o-1/4) = O(07); thus we write 

2 = o-’(X - X,) , 2 = o - q 2  - ZS) . 

F(2,Z) = o”4P(X, 2 )  . (5.39) 
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We may confirm that for this scaling, cubic interactions within the critical layer can 
affect the modulation of the disturbance, as follows. The vertical velocity v of the 
fundamental mode has an O(a8) magnitude, while its leading-order streamwise (u)  
and spanwise ( w )  velocity components in the critical layer are of O ( 0 6 )  and O ( 0 5 )  
respectively. The quadratic interaction of the fundamental with itself, through the 
vuy inertia term, drives an O(07) streamwise velocity in the form of a mean flow and 
harmonics. The cubic interaction of these with the fundamental generates an O(os) 
streamwise-velocity correction in the fundamental mode, which balances the O(06 a2) 
spanwise-dispersion term d2u/dZ2. Moreover, the nonlinear interactions within the 
critical layer occur in the same manner as in Wu (1993~). In consequence, the 
development of the disturbance at this stage is governed by an amplitude equation 
akin to (5.1) of Wu (1993a), namely 

with 

(5.41) 

The term proportional to p does not appear in the amplitude equation since the 
disturbance now evolves over a much faster spatial scale than in the linear growth 
rkgime. The appropriate initial condition for this equation follows from matching to 
the previous stage, i.e. as 2 -+ -cc we require from (5.31) 

p - (-X)-1/4+xeieG (2/(-2)1/2) . (5.42) 

It would be interesting to see whether solutions of equation (5.40) with such an 
initial condition can display the splitting of wavepackets observed by Gaster & Grant 
(1975). 

6. Discussion and conclusions 
In this paper we have developed a self-consistent theory to describe the nonlinear 

evolution of spanwise-modulated T-S wavetrains in boundary layers. In the case 
of a fixed-frequency disturbance propagating downstream, we have assumed that 
nonlinearity first becomes significant at streamwise locations in the so-called upper- 
branch rigime. The scale of the spanwise modulation has been fixed by requiring 
that spanwise dispersion is significant on the slow streamwise-growth scale, while the 
amplitude of the disturbance has been chosen so that weakly nonlinear effects are 
also significant on this scale. We find that the dominant nonlinear effects come from 
the critical layer and the surrounding diffusion layer, in the form of a wave-vortex 
interaction (cf. Smith & Walton 1989; Wu 1993a,b; Wu et al. 1993; Mankbadi et 
al. 1993; Brown et al. 1993; Smith et al. 1993). It follows that the evolution of the 
wavetrain amplitude is governed by an integro-partial-differential equation with a 
non-local nonlinear term. 
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We have examined properties of the amplitude equation (5.8) analytically and nu- 
merically. Plane T-S waves have been shown to be linearly unstable to a rapidly 
growing secondary instability of sideband type. Moreover, for the full nonlinear 
equation we have shown that spanwise modulation can lead to the occurrence of 
a singularity at a finite distance downstream and at a particular spanwise location. 
The concentration of energy in the spanwise direction is possibly consistent with 
the observations of Klebanoff et al. (1962) on the formation of streamwise ‘streaks’. 
The formation of the singularity indicates that the wavetrain enters a new stage of 
development in which the evolution takes place on shorter streamwise and spanwise 
lengthscales. A close examination shows that, in this new stage, the critical layer is of 
non-equilibrium type (cf. Wu 1993~). A firm comparison with experiments awaits a 
study of this new asymptotic stage. However, we note that since our analysis is valid 
for any combination of temporal and streamwise modulation, a direct comparison 
with experiment may eventually prove possible.? (On the other hand, the recent 
paper of Healey (1995) suggests that in order to obtain a quantitative comparison, 
some form of composite, or recast, expansion will probably be necessary). For the 
scalings in this paper, a study of the effect of simultaneous temporal and streamwise 
modulation on both the numerical results and the singularity is underway. 

Although our analysis is presented for the upper-branch regime, the same evolution 
equation also applies to the ‘high-frequency’ limit of the lower-branch regime, provided 
that the second term in the linear growth rate, ICR, in (5.5) is dropped (and rc1 suitably 
modified). In this sense, the upper-branch scaling can be regarded as more general 
than the HFLB. The weakly nonlinear evolution of spanwise-modulated planar T-S 
waves in the latter regime has been studied by Stewart & Smith (1992) for boundary 
layers. Like us, they assumed that spanwise dispersion was comparable with the slow 
streamwise growth. However, in fixing the nonlinear scaling, they assumed that the 
critical layer is ‘passive’ (i.e. the velocity jump is zero). Our analysis suggests that 
this assumption is questionable. Indeed we find that, for our scaling, the critical layer 
and diffusion layer are the most active regions as far as the nonlinear dynamics are 
concerned. Specifically, for our choice of disturbance amplitude, the nonlinear term 
in (5.3) arises from a wave-vortex interaction within these layers, while nonlinearity 
in the bulk of the flow is a higher-order effect. 

Likewise, in the analogous problem for PPF, because of the sensitivity to nonlinear- 
ity of the critical layer and the accompanying diffusion layer, nonlinear effects actually 
come into play at much lower amplitudes than those considered by Smith & Bowles 
(1992), who again assume a ‘passive’ critical layer. An analysis of PPF from the per- 
spective of our amplitude equation is given by Stewart & Wu (1996, in preparation). 

The related work of Smith & Stewart (1987), concerning ‘resonant-triad’ interac- 
tions in the HFLB regime of a boundary layer, also assumes no velocity jump across 
the critical layer (see also Bassom & Hall 1991). Again, we feel that this assumption 
needs further justification.$ Indeed, Mankbadi et al. (1993) and Wu (1993b) have 
studied resonant-triad interactions of T-S waves with the upper-branch scaling for 
both the Blasius boundary layer and boundary layers with pressure gradients (see also 
Mankbadi 1991). In both cases, a diffusion layer exists and the total velocity jump 
across the critical layer and diffusion layer is non-zero. Moreover, Jennings et al. 
(1996, in preparation) have explicitly confirmed that the resonant-triad equations of 

t Stewart & Smith (1992) compared a spatio-temporal theory, which was not valid in the purely 
spatial case, with spatial experiments. See also later comments. 

$ This point has also been made by Khokhlov (1991, 1993). 
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Mankbadi et al. (1993) and Wu (1993b) can be derived in the HFLB limit (as was to 
be expected), with nonlinear interactions becoming significant at smaller disturbance 
amplitudes than those considered by Smith & Stewart (1987). In addition, Jennings 
et al. (1996, in preparation) find solutions involving both spanwise and streamwise 
modulation. 

In the light of the above we believe that, especially in the case of three-dimensional 
disturbances, there is no a priori reason for assuming that the velocity jump across a 
critical level is zero. Furthermore, in a viscous fluid, a diffusion layer will in general 
develop, and this layer can crucially affect the velocity jump. A consequence of this 
is that the velocity jump across a ‘steady’ critical level can differ from the velocity 
jump across an evolving critical level, even when an inner critical layer in the latter 
case has achieved a quasi-steady state (which may be asymptotically inviscid): see for 
example Cowley (1981), Haynes & Cowley (1986), Gajjar & Smith (1985). We believe, 
therefore, that in the case of a real viscous fluid, a careful justification is required 
if a detailed study of (critical layers and) diffusion layers is to be avoided in any 
predominantly inviscid, time-dependent, nonlinear analysis (e.g. that of Smith 1992). 
Indeed, such justification is particularly important in inviscid analyses where viscous 
diffusion is (implicitly) invoked to ensure that the vorticity distribution within the 
‘cats-eyes’ does not have a (pathological) small-scale structure (cf. Stewartson 1978; 
Brown & Stewartson 1978; Goldstein & Hultgren 1988). 

The authors would like to thank Mr M. J. Jennings for assistance with the compu- 
tations, especially those described in Appendix C, and Professor J. T. Stuart FRS for 
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Workshop on Advances in Analytical Methods in Aerodynamics, 12-14 July 1993, 
Miedzyzdroje, Poland. 

Appendix A. The ‘high-frequency’ lower-branch rCgime 
As indicated in $1, at least as far as linear theory is concerned, the so-called 

‘high-frequency’ lower-branch (HFLB) rkgime is equivalent, in our terminology, to 
the ‘upstream’ limit of the upper-branch rkgime. The aim of this Appendix is to 
demonstrate that this is still so in the case of our weakly nonlinear theory. 

The lower-branch rbgime for an incompressible boundary layer (with or without 
pressure gradient) is described by a ‘triple-deck’ structure (Smith 1979, 1986; Smith 
& Stewart 1987). The relevant scalings for the horizontal coordinates and time are 

In the main part of the boundary layer (the ‘middle deck’), the flow perturbation is 
effectively inviscid; viscous effects are only significant in a sublayer (the ‘lower deck‘) 
where the appropriate normal coordinate is 

h 

Y = R‘14y , (A 2) 
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and the velocity components and pressure scale as 
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0 = R’I4~  , P = R3I4u , @ = R’I4w , 9 = R‘l2p . (A 3) 

The governing equations for the lower deck are then 

l7g + P p  + @2 = 0 ,  

Of + uug + vup + W O i  = -92 + O p p ,  

@f + U W g  + P @ p  + @@i = -92 +@pi., 

(A 4) 

(A 5) 

(A 6) 
9 p  = 0 ,  (A 7 )  

U = V = W = O  on Y = O .  (A 8) 

A A  A h  

A h  

with the wall-boundary condition 
A h A  A 

The leading-order solution in the ‘middle deck‘ provides the outer boundary condition 
on (A 4)-(A 5), namely 

i r - ~ ( X ) ( P + s i ~ ) ,  @ + o  as ?+a, (A 9) 

while that in the ‘upper deck‘ (outside the boundary layer) gives the ‘interaction’ 
relation 

between the (unknown) functions d( ?, &,2 ; X) and Y( ?, &,2 ; X). Finally, if the 
flow perturbation vanishes far upstream, 

f i - i l ( X ) ?  as &-+-a. (A 11) 

A ( X )  is the local undisturbed wall shear. For a fixed-frequency disturbance, the 
far-downstream limit of the lower-branch regime corresponds to A ( X )  -+ 0. Linear 
solutions in this limit can be shown to match to upper-branch solutions in the 
‘upstream’ limit. However, A ( X )  can be scaled from the problem, i.e. without loss of 
generality A ( X )  = 1. Mathematically, the far-downstream limit then corresponds to 
the ‘high-frequency’ limit of Zhuk & Ryzhov (1982) and Smith & Burggraf (1985). In 
order to spell out the link between our upper-branch approach and the HFLB, we 
here outline a derivation of (5.8) from the standpoint of a HFLB limit. 

We assume that the disturbance has a given fixed frequency, h, and that 

h + l .  (A 12) 

From the properties of the linear solution (Zhuk & Ryzhov 1982; Smith & Burggraf 
1985; Stewart & Smith 1992), it is known that appropriate scalings for the time and 
horizontal coordinates are 

* A  A h  

T = Q-’t = T , X = Q-’I2x = fi’I2X , 2 = z . (A 13) 

The scalings (A 13) lead to the multiple-scale substitutions 

Arguments similar to those given in the main text, and by Wu ( 1 9 9 3 ~ ) ~  show that 
in the high-frequency limit, the lower-deck region, i.e. ? = 0(1), splits into five 
asymptotic zones, namely 
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(a) a Tollmien layer of width O(h1I2), 
(b)  a viscous critical layer of width 0(8-'/6), 
( c )  a diffusion layer of width O( 1) surroundi:g the critical layer, 
( d )  a passive wall-buffer layer, of width O(s21/6) in the case of a purely spatial 

stability analysis (i.e. with a/aT = 0), but of width 0(1) otherwise (e.g. for a temporal 
stability analysis or a wavepacket analysi?), and 

( e )  a viscous Stokes layer of width O(Q-'/2). 
A scaling argument based on the analysis in the main text suggests that, for the 

scalings (A13), the smallest pressure perturbation which will give rise to a weakly 
nonlinear response has 9 = O(h-3/4). This is much smaller than the pressure 
perturbation considered by Stewart & Smith (1992). We therefore write 

9 = h-3/4(90 + 8 - l ~ ~  + . . .)E + C.C. + . . . , 
d = iW4(do + S i - l d 3  + . . .)E + C.C. + . . . , 

where 

Solutions can now be sought in each of the five asymptotic regions. 
E = exp(ia0x - it) and 90 = Yo( T ,  X, Z) , etc. 

(a )  In the Tollmien layer, we put 

p = fi1/2y , 

0 = iW2y + 8-5/4(u0 + Si-lu, +. . .)E + C.C. + . . . , 
P = 8-1/4(v0 + 8-' v3 + . . .)E + C.C. + . . . , 
FV = 8-7/4(w0 + . . .)E + c.C. +. . . . 

and the expansions corresponding to (A 15) and (A 16) are 

Solutions can be found in the form 

where 

a g o  i a2g0 
b3 = -iaoP3 - - + "0 - d o  - ~ + -7 , 

(a!f ax a ) ax a. az 
and a, is undetermined at this stage. 

(b)  In the Stokes layer, where 

p = &-'/2? 

the velocity components expand in the form 

u = 8- ' / 2$  + 8- 5 / 4  ( "  Uo + . . .)E + C.C. + . . . , 
= W4(i,b + . . .)E + C.C. + . . . , w = 8-7/4(+0 + . . .)E + C.C. +. . . , (AD) 



(d) In the difuusion layer, likewise 

p - 8 1 / 2 a ; 1  - - 9 ,  

and 

8 = ad 112 a0 -1 + 

I/ = &- ' I4 ( -  i do + ad-1/2Vo + . . . + k 3 l 2 V 3  + . . .)E + c.c. 

w = i W 4 ( W 0  + . . .)E + C.C. + W 2  W M  + ...  . 

+ { ( 8 0  + 8 - ' 1 2 8 3 / 2  f 8-' 8 3  + . . .)E + C.C.} 

+ a d - 3 / 2 u M  + . . . , 

+ 8 - ' / 2 v M  + . . . , 

(A 37) 

(A 38) 
(A 39) 

The solutions in the critical layer and diffusion layer can be obtained directly from 
those in the main text by setting 

A = l ,  A 4 = 0 ,  w = l ,  co=c^=a,' ,  (A 40) 

a i = O ,  c i = O ,  Ai=O f o r i = 1 , 2 , 3 L .  (A 41) 
Hence, from (3.26), (4.17). (4.18) and (4.22), the jump in d V 3 / d Y  is given by 

Matching the solutions in the Tollmien layer to those in the Stokes layer, and making 
use of (A 25) and (A 42), we find that 

d o  = a090 3 
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The interaction law (A 10) provides the additional relationships 

9 0  = aodo 7 (A 45) 

Equations (A43) and (A45) give 

while combination of (A42), (A44), and (A46), and use of (A45) and (A47), yields 
the amplitude-evolution equation 

a o = 1 ,  (A 47) 

After the transformation corresponding to (5.6) and (5.7), this equation reduces to 
the form (5.8). 

Appendix B. Limiting cases of the amplitude equation 
If the scale of the the spanwise variations differs (slightly) from that assumed in 

(2.5), namely z = O ( O - ~ / ~ ) ,  the amplitude equation (5.2) simplifies. In this Appendix, 
we examine spanwise variations that are less and more rapid than (2.5). 

B.l. Weak spanwise variations 
In order to examine the case of weak spanwise variations we introduce 

2 = p z  , F ( T , X , 2 )  = P P ( T , X , Z ) ,  (B 1) 

where p41, and both 2 and f' are assumed to be of order one. On substituting (B 1) 
into (5.8), and then taking the limit f i  -+ 0, we find that f' is governed, to leading 
order, by 

(B 2) -- a' - B + i F  gy-1/2 ~ ( ~ - ( , ~ - l , ~ ) B ~ ( T - ( , X - ~ , 2 ) )  ~ d( . a x  Z 

The unscaled magnitude of the streamwise perturbation velocity in the bulk of the 
boundary layer is now O ( O ~ ~ / ~ ~ - ' ) .  This indicates that for weak spanwise variations, 
a larger magnitude is needed in order for the nonlinearity to come into play (see also 
( 5.1 6)). 

We do not study the properties of equation (B2) in depth. It is readily shown, 
however, that as for the full equation (5.8), plane-wave solutions of (B2) are subject 
to sideband instability. Further, preliminary numerical solutions of (B 2), with f' 
independent of T ,  indicate the emergence of 'spikes' in the amplitude at particular 
spanwise positions. Unfortunately it is not clear whether the solutions terminate in a 
singularity. However, we note that a candidate structure for a 'focusing' singularity 
%t a Gnite distance downstream, X = X, say, and a particular spanwise position, 
Z = Z,, has the form 

(B 3) I; - v (0 - $ l no  + $ ~ ( q )  + . . . I ' -~  , 
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FIGURE 8. The numerical solution to (B 5) with F ( 0 )  = 0 and F’(0) = 0. -, F ( { ) ;  - - -, fiF’(fi). 

where 

2 -2, 
= IVl(X, - X ) 3 / 4 0  ’ 

a=In(X,-X)- ’ ,  A 

v is an arbitrary complex constant, and F ( q )  satisfies 

On the assumption that F is even in f i ,  it is straightforward to find a series solution 
to this equation with the asymptotic behaviour 

F--ln\fi1 as 161 -00. (B 6 )  

The value of F ( 0 )  is undetermined. Figure 8 shows the solution with F(0)  = 0, 
together with QF’. 

A point in favour of this singularity is the relatively slow logarithmic growth in 
amplitude implied by (B 3), which seems consistent with our difficulty in confirming 
that numerical solutions to (B2) become unbounded. However, it is possible that 
equation (B 2) admits other singularity structures with spanwise variations propor- 
tional to (3, - X y  , a < i, and amplitude growth like (X, - X)-3/4+a. If a singularity 
of the form (B 3)-(B 4) does indeed occur, then the relatively rapid contraction in the 
spanwise direction as (X, - X)3/4 means that the asymptotically smaller p22 term is 
growing in importance. Hence sufficiently close to the singularity it will be reinstated, 
and the governing equation will revert to (5.8) - without the P linear growth term 
(cf. $5.3). 

We end this subsection by noting that equation (B2) is no longer valid if the 
three-dimensionality is too weak. More precisely, when cr25/48-1 - 05, i.e. when 
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p = 0 ( 0 ~ / ~ ) ,  the critical layer becomes strongly nonlinear as for a purely two- 
dimensional disturbance (e.g. Gajjar & Smith 1985; Goldstein & Durbin 1986).t 
The critical layer is surrounded by a diffusion layer (cf. Brown & Stewartson 1978; 
Churilov & Shukhman 1987; Goldstein & Hultgren 1988). However, in contrast to 
the purely two-dimensional case, the weak three-dimensional effects present for this 
distinguished scaling are likely to ensure that the diffusion layer is not passive. 

B.2. Strong spanwise variations 

If the spanwise variation is more rapid than that specified by (2.5), then it is necessary 
to specialize to particular types of spanwise dependence if linear disturbances are to 
be followed into the weakly nonlinear rkgime. To understand why this is so, note that 
the streamwise lengthscale is dictated by the growth rate provided by the Stokes layer. 
If the spanwise variation is more rapid than (2.5), then the a2Po/dZ2 term in (5.2) 
will be larger than the i3Po/i3X term, and the latter term cannot be retained in the 
leading-order amplitude equation; in general, this makes matching to an upstream 
linear stage impossible.$ Nevertheless, we can consider stronger spanwise dependence 
in the particular cases where the disturbance in (5.2) consists essentially of an oblique 
mode, or a pair of oblique modes. 

(a )  A pure oblique mode satisfying (5.2) has the solution, PO = eipz+(K-idp2)x/cg; note 
that an additional frequency shift can be allowed, but can equally well be absorbed 
into the definition of co (see the discussion leading up to (2.4)). Various modulations of 
this wave are possible, but a distinguished case has (i) the modulation travelling with 
the group velocity, and (ii) the 'spanwise' modulation perpendicular to the wavevector 
rather than the free stream. To this end we write 

po = ~-1/2p(Z, X ,  i)eiPZ-idP*X/c, + . . . , (B 7) 

where z = T - X / c ,  is the retarded time variable, 2 = (2 - 2dpT) - a;lp(X - c ,T)  
is the spanwise variable, and the scaled spanwise wavenumber is assumed to be large 
(p+l).  Then after use of (2.28), (5.4), etc., P is found to satisfy 

A nonlinear term of similar form has been obtained in a related context by Churilov 
& Shukhman (1994), and also by Gajjar (private communication, 1994). Further 
discussion of equation (B 8) is given by Stewart & Wu (1996). 

(b )  For a pair of oblique modes, an appropriate substitution is 

P o = p  -1 e -idBZX/c, (pltjeiPZ + plTe-iBZ) 

+ p-3e-idp2x/c,(p;eiBZ + p-e-ipz + P + ~ ~ $ Z  + ~ - ~ - 3 i p z  
31 33 33 I + . . . ,  (B9) 

where p+ l ,  2 = p-'Z, and the P; are functions of T ,  X and 2. At leading order the 

t A closely related three-dimensional scaling has been derived by Professor A. F. Messiter (private 

$ However, if the requirement of linear upstream matching is relaxed, then it is possible to 
communication, 1991). 

consider rapid spanwise modulations of more general form, e.g. Smith & Walton (1989). 
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amplitude equation (5.8) becomes 
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PAT + cgPAx + 2dPA9 = ICPA 

-2ipP; [-1/2P:(T - [/co,X - [,i)P;*(T - [ / co ,X  - [,?)dl , (B 10) La 
la 

P f i T  + cgP& - 2dPi2 = ICP, 

-2ipPA [-'/2P;(T - [/co,X - [,?)PA*(T - [ /co ,X  - [,?)dl . (B 11) 

However, equations (B 10) and (B 11) are not valid for arbitrarily large p. Let us 
consider a fully three-dimensional problem where the T-S waves have an order-one 
obliqueness. The wall pressure might then take the form 

(B 12) P - F~(P+(T,x,  Z)eit+iaaz + P-(T, X ,  Z)eit-iaaz + C.C.) +. . . , 
with 

2 4 = aax - a cot , 2 = a z , ii = a0 + oiil + 02& + a3 lnoii3L , (B 13) 

and p of order one, in place of (2.9). Equation (B 12) represents two oblique modes 
with comparable streamwise and spanwise wavenumbers, propagating at equal and 
opposite angles to the flow direction. In this case, by a slight modification of the 
work of Mankbadi et al. (1993) and Wu (1993b), we find that when = O(os) the 
leading-order dispersion relation is 

20 (a; + p 2 )  ll2 = Aco , (B 14) 

and the governing amplitude-evolution equations are 

r m  

- iP4,iiP+ J, P;(T- r / co ,X- [ ,Z )P- (T - i /~o ,X- [ , z )d[  , (B 16) 

where .i = a4z represents a slow spanwise modulation, and 

The systems of equations (BlO), (B 11) and (B 15), (B 16) clearly differ. This 
indicates that there is an intermediate scaling between the p = O(a3l2) scale considered 
in this paper, and the P = 0(1) scale considered by Mankbadi et al. (1993) and Wu 
(1993b). We identify this intermediate scaling to be p = O ( O ' / ~ ) .  For such moderately 
oblique waves, we introduce 

i j  = o-1/4p , 5 = a15/4p-1z , P+( T ,  x, 2) = a1/2BP+( T ,  x, z). (B 19) 

Then by combining the analysis in the present paper with that of Wu et al. (1993), 
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Mankbadi et al. (1993) and Wu (1993b), we have that 

aP+ aP+ a P ,  
- + c ~ + 2 d y  = K P ,  
aT gax aZ 

aP - aP- - 
2d- = KP- 

aP- 
E - + % F -  a2 

r m  

where 

Clearly, this system of equations reduces to (B lo), (B 11) in the limit p + 0, while as 
p -+ co it matches to the small-p limit of (B 15), (B 16). 

For all B, the coefficients of the nonlinear terms in (B20) and (B21) are purely 
imaginary. It follows that if P+ are periodic in 2, with period E, the ‘energy’ integral 

t 
E ( T , X )  = 1 + IP-I2) dE (B 23) 

satisfies 

If instead equations (B20)-(B22) describe a pair of localized wavepackets, so that 
PiF + 0 as 121 -+ co, then (B23)-(B24) holds with f replaced by J-“,. In both 
cases the ‘energy’ grows exponentially in a frame moving downstream with the group 
velocity. 

For the particular case where the Pk are independent of 2, equations (B 20)-(B 22) 
admit an exact, equal-amplitude solution 

P+ = P -  = R(z) exp(lcX/c, + iO) , z = T - X / c g  , (B 25) 

(B 26) 

where R and Oo are arbitrary real-valued functions. Numerical solutions of (B20)- 
(B22) with the Pk functions of X only (or of T only), and with unequal initial 
amplitudes, have been found by Wu (1993b) in the large$ limit. He finds that the 
equal-amplitude state (B 25)-(B 26) is attained at large X (or T ) .  Further computations 
under the same assumptions suggest that this is so for all values of p. Work is in 
progress to investigate solutions of the full system (B 20)-(B 22) (Jennings et al. 1996). 
The same equations, with more general complex values for p and po (cf. Wu 1993a, b),  
and allowing for weak non-parallelism, have been studied by Timoshin & Smith 
(1993). 

Finally, we note that asymptotic description (B9)-(B 11) will not be valid for 
arbitrarily large X ,  since it is readily shown that if the P; grow like eYx, the third- 
harmonic terms P z  behave like e3Yx. In fact, all (odd) harmonics become significant 
at leading order when X = O(lnP), and the subsequent development is described by 
equation (5.2), without the linear growth term. 

O ( T , X )  = @O(Z) - ( 2 1 ~ ~ ) ~ ~  K ( 5 )  ~ X P  [ ~ K R ( X  - O/cg] R2 (7 - i / cg )  d i  , 
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Appendix C. Numerical method for (5.32) 
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Rather than solving (5.32) in complex form, we first write 

where p and 4 are real variables which satisfy 

We seek solutions that are even in r]  and for which 

p - 0 ,  +’-O as Ir]l+.o. (C 4) 

Equations (C 2) and (C 3) were solved using a modified fourth-order Runge-Kutta 
scheme. The solution was marched in the direction of increasing r ]  starting from 
the series solution at r]  = yo > 0. The integrals were evaluated using Simpson’s rule 
after making the transformation < = r]  siny. The end point at [ = r ] ,  i.e. y = n/2, 
was incorporated explicitly into the Runge-Kutta scheme, although extrapolation 
from the solution at previous grid points was necessary to calculate the integrands at 
certain points. The extrapolation tended to leave the numerical scheme unstable, and 
hence a ‘corrector’ step was implemented in which only interpolation was necessary 
in the calculation of the integrands. At the Nth step of the Runge-Kutta scheme, 
approximately 3N (even) intervals were used in Simpson’s rule. The numerical scheme 
was tested against the exact solution 

The solution in figure 6 for K = 0.392751 and G(0) = 0.986440 was plotted using 60 
terms of the series solution at r]o = 0.4, and a step size of h = 0.01. 
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